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It is now generally agreed that an external disturbance field, such as an incident 
acoustic wave, can effectively couple to instabilities of a flow past a trailing edge. 
One purpose of the present paper is to show that there are situations where a similar 
coupling can occur a t  a leading edge. The process is analysed and the effects of experi- 
mentally controllable parameters are assessed. It is important to account for such 
phenomena when evaluating the effect of external disturbances on transition. 

1. Introduction 
The effects of viscosity cannot always be ignored when calculating the steady or 

unsteady flows about solid obstacles even when the Reynolds numbers are large. But 
when the obstacle is thin in one of its transverse dimensions (relative to its streamwise 
dimension) and the amplitude of the unsteady velocity is small relative to the mean 
flow velocity (or relative to the velocity of sound if the frequency is high enough) the 
dominant viscous effects will often act along one or more lines such as the trailing 
edge of the obstacle. I n  which case i t  is usually possible to  incorporate the viscous 
effects into an otherwise inviscid solution to the problem by imposing a ‘Kutta’ 
condition - which requires that the solution remain finite a t  the trailing edge. 

When there is no mean flow and the edge of a flat plate is subjected to a small- 
amplitude unsteady motion (say an incident acoustic field) the correct inviscid solu- 
tion will exhibit a square-root singularity a t  that edge. But when a mean flow is 
imposed on one or both sides of the plate the singularity at a trailing edge will be 
smoothed out by a continuous shedding of vorticity that is convected downstream by 
the mean flow. This vortex shedding can generally be incorporated into an inviscid 
model of the flow, but the amount of shed vorticity must then be determined by 
consideration of viscous effects. It turns out that this quantity is directly related to 
the level of the trailing edge singularity. The ‘Kutta’ condition requires that the 
amount of shed vorticity be just sufficient to eliminate the singularity a t  the trailing 
edge. This leads to a uniquely specified boundary value problem for the inviscid 
flow equations. 

Calculations involving viscosity (Brown & Daniels 1975; Daniels 1978; Rienstra 
1979) confirm the validity of the ‘Kutta’ condition for sufficiently high Reynolds 
number laminar flows whose frequencies and unsteady amplitudes are sufficiently 
small. There are also a number of carefully controlled experiments (Brstt 1053; 
Ohashi & Ishikawa 1972;  Kovasznay & Fujita 1973; Heavens 1978; Bechert & Pfizeri- 
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maier 1975) which generally indicate that the ‘Kutta’ condition will be satisfied 
whenever the amplitude and frequency of the unsteady motion are not too large. 

The vortex shedding can frequently be accounted for by allowing a thin vortex 
sheet to extend downstream from the trailing edge whenever the mean flow velocity 
is substantially the same on both sides of this edge, as it would be, say, for an airfoil. 
The vorticity in this sheet is convected downstream with unchanged amplitude a t  
the velocity of the mean flow. Since Wagner’s (1925) original study of the lift on 
impulsively started airfoils, most analyses of the unsteady airfoil problem have 
accounted for this effect. The strength of the vortex sheet is usually determined by 
requiring that the ‘Kutta’ condition be satisfied. 

The case where there is a finite mean flow on one side of the obstacle and zero mean 
flow on the other has been considered only recently. This configuration is fairly rep- 
resentative of the flow near a nozzle lip. Crighton & Leppington (1974) considered 
the unsteady flow produced by a time-harmonic acoustic source near the edge of a 
semi-infinite flat plate which has a uniform mean flow on one side and zero mean flow 
on the other and extends to infinity in the upstream direction. They showed that this 
problem does not possess a solution that remains finite a t  all points of space. I ts  
solution will either exhibit a singularity a t  the trailing edge or will grow exponentially 
fast a t  downstream infinity, or both. Mathematically, this case differs from the one 
where the mean flow is the same on both sides of the plate because the latter problem 
possesses an eigensolution that ( 1) has t~ tangential velocity discontinuity across a 
sheet which extends downstream from the trailing edge, that ( 2 )  remains bounded a t  
infinity, and that (3) has a square root singularity a t  the edge. Then since it is per- 
missible to  add an arbitrary multiple of this eigensolution to the particular solution 
which is continuous everywhere downstream of the trailing edge and since this 
latter solution also possesses a square root singularity at  the edge, the arbitrary 
constant can always be adjusted to cancel out the singularity between these two 
solutions. 

When the mean velocity is discontinuous across the plate, the eigensolution corre- 
sponds to a spatially growing Helmholtz instability of the velocity discontinuity shear 
layer and must therefore grow exponentially with downstream distance (Crighton & 
Leppington 1974; Rienstra 1979). The solution to the problem will then be exponen- 
tially large a t  infinity if this eigensolution is added in to cancel the square root singu- 
larity a t  the trailing edge. But, such behaviour is not necessarily inconsistent with the 
physics of the problem since the linear solution is only expected to be valid in a local 
region near the edge. Then, since the instability wave becomes excessively large only 
when it is outside of this region, there is some hope that its large magnitude will not 
substantially alter the local solution near the edge. 

In  any case, this triggering of the instability by an incident acoustic signal now 
appears to be well verified experimentally (Bechert & Pfizenmaier 1975) and, in 
many instances, the ‘Kutta’ condition actually seems to be satisfied. 

When the time-harmonic solution is not required to be bounded a t  infinity some 
additional condition must be imposed in order to make it unique. We have seen that 
this can sometimes be accomplished by imposing a ‘Kutta’ condition a t  a trailing 
edge. However, it can also be accomplished by finding the long time behaviour of 
the solution to the corresponding initial-value problem that has minimum edge sin- 
gularity and satisfies causality in the sense that the flow is identically zero before 
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FIGURE 1. Orientation of plate in sheared mean flow. 

the incident disturbance is ‘switched on’. These two conditions lead to  the same 
solution for the trailing-edge problem of Crighton & Leppington (1974) ! 

Now Crighton & Leppington did not stress the ‘Kutta’ condition but rather 
emphasized causality as being crucial for their result. Rienstra (1979), on the other 
hand, argues that causality is irrelevant in periodic flows that exist for all time and 
that the appropriate boundary condition is then an edge condition, such as ‘Kutta’ 
condition, which is determined solely by viscous and nonlinear effects. He points out 
that the memory of the real physical system cannot, in reality, be very long, with the 
variety of random disturbances that must always occur, and that the transient 
response field which cannot match the edge condition must be swept away by the 
flow. But mathematically the causality condition acts as a sort of ‘radiation condition 
.for instability waves’, which ensures that all such disturbances travel outward from 
their source, and, unlike the causality condition, the ‘Kutta’ condition is not always 
sufficient to determine the solution even for some trailing-edge problems uniquely. 

Thus it is possible that singularities in the inviscid solution are often eliminated 
or a t  least minimized by the triggering of a spatially growing instability wave in the 
downstream region and that the flow separation that might otherwise occur is 
thereby prevented or perhaps moderated. Now the unsteady inviscid flow solu- 
tions also become singular a t  sharp leading edges. But it frequently happens that this 
singularity cannot be eliminated by a downstream instability because the latter’s 
growth is inhibited in the narrow and highly stable boundary layer that usually 
occurs near the leading edge. The singularity must then be relieved by viscous and 
nonlinear effects and it might ultimately lead to unsteady flow separati0n.t But it is 
quite easy to induce an instability wave downstream of a leading edge when it is 
embedded in an inflexional shear flow in the manner indicated in figure I - especially 
when this flow is on the verge of becoming unstable. Such spatially growing instability 
waves are clearly shown in figure 2, which is comprised of photographs of the flow 
over a wedge placed in a rectangular laminar jet. (The flow here is from left to right.) 
The photographs were taken during an edge tone experiment and the unsteady 
motion that triggered the instability wave could have been an acoustic wave reflected 
from the nozzle lip or a harmonic disturbance convecteddownstream by the mean flow, 
or perhaps both. We shall not attempt to analyse this rather complicated flow. 
But suppose that an unsteady disturbance is incident on the leading edge of a long 
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FIGIJRE 2. Vortex shedding downstrcain of a leading d g e .  (From McCartney & Grebe 1973.) 

flat plate embedded in an unstable mean flow. It could happen that nonlinear and 
viscous effects will trigger an instability wave in the downstream flow in order to 
eliminate the singularity in unsteady pressure that the incident disturbance would 
otherwise produce. 

But it turns out that, unlike the solution of the corresponding tralling-edge problem, 
the solution to the present problem that is non-singular a t  the edge is also non-causal ! 
This occurs bccause the resulting formula involves a spatially growing instability 
wave that propagates towards the edge on the upstream mean flow. But this in- 
stability is never unbounded and decays to zero a t  upstream infinity. Of course the 
solution that, docs not involve the downstr~nm instability wave is also non-causal. 
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Now it is possible to construct a causal solution to this problem, which does not 
involve an instability on the upstream flow but which, like the non-singular solution, 
is coupled to an instability wave that propagates away from the edge on the down- 
stream flow. However, this solution is again singular at  the edge ! 

Since it is still not clear that  the causal solution will always provide the best 
representation of a real flow that was initiated in the distant past, I do not think 
we can completely rule out the non-singular solution. I shall therefore discuss the 
implications of both these solutions. 

In  52.1 we construct an inviscid solution for the unsteady flow that occurs when 
an unsteady harmonic disturbance is incident on the leading edge of a plate placed 
in the parallel bhear flow depicted in figure 1. We require that this solution be bounded 
at  large distances from the edge. It turns out that it must then have a singularity a t  
the edge and that it must also be non-causal. We next construct (in 52.2) an eigen- 
solution to this problem, which is associated with a spatially growing Helmholtz 
instability of the downstream semi-bounded flow and which also has a singularity a t  
the edge. The general solution to the problem is given by the sum of the particular 
solution constructed in 5 2.1 and an arbitrary multiple of this eigensolution. As we 
already indicated, Crighton & Leppington (1974) used a similar decomposition for 
their trailing edge problem. In 52.3 we show that the arbitrary multiplicative con- 
stant can always be chosen so that the leading edge singularity is eliminated from the 
solution. Of course, depending on such things as the viscosity, frequency, etc. the 
leading-edge singularity in the actual flow may not be completely eliminated by 
the instability wave and some flow separation might even occur. 

We begin $2.4  by giving a formal derivation of the least singular causal solution. 
We then show that the result could also have been obtained by appropriately adjusting 
the arbitrary constant in the general solution alluded to above. This choice of the 
constant eliminates the upstream instability wave from the solution but not the 
downstream instability. I n  $ 3 we discuss the general properties of the two solutions 
described above and consider their relative merits. It is pointed out that they both 
predict the odd symmetry between the upper and lower surface instability waves 
that is evident in the photographs of figure 2 .  Formulae for the acoustic radiation are 
derived in $4. When the frequency goes to zero, the causal result becomes identical 
to the result with no edge singularity (i.e. the edge singularity disappears in this 
limit, Goldstein 1979, appendix B) and both results are consistent with the low- 
frequency solution obtained by Goldstein (1978, 1979). 

I n  $ 5  we obtain specific formulae for a slug flow model of the shear layer. Their 
implications are discussed in 9 6. The calculations described in this section show that 
the plate does not substantially inhibit the growth rate of the downstream unstability 
wave until the reduced frequency, based on the distance between the plate and the 
edge of the shear layer, becomes very small. (The wavelength of the instability shown 
in figure 2 indicates that the reduced frequency is of order one there.) 

There has recently been considerable interest in the so-called receptivity problem 
(Morkovin 1969) which is concerned with how the instability waves that lead to 
turbulence are triggered by disturbances in the free stream. The present work indicates 
that  this triggering might occur in a particularly efficient way whenever the free- 
stream disturbance can prodace large local pressure gradients by interacting with 
sudden changes in boundary conditions such as those associated wit'h a11 edge. 

8-2 
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2. General analysis 
We consider a long thin flat plate placed in a constant density parallel shear flow 

in the manner depicted in figure 1. We suppose that a two-dimensional small-amplitude 
harmonic motion is imposed on the flow, say for definiteness, by an incident acoustic 
wave with frequency w > 0 ,  which we suppose to be large enough so that viscous 
effects can be neglected near the edge. Then the unsteady (x and y component) velocity 
and pressure fluctuations (u, v) and p ,  respectively, will also have the harmonic time 
dependence 

and will be governed by the linearized inviscid continuity and momentum equations 

@, u, v) = (IJe-i&, Ge-i"t, v"e-i"t) 

respectively, where U = V(y) is the velocity of the mean flow, po and co are its assumed 
constant, density and speed of sound, and the prime denotes differentiation with 
respect t o y .  

Outside of the shear layer, the incident acoustic disturbance, whose velocity and 
pressure are denoted by uI, vI ,  and p I ,  respectively, will behave like an ordinary 
acoustic wave on a stationary medium and its pressure will, therefore, be of the form 

pl a e x p  [iko(K1x - ( 1  - K;)+ y - c o t ) ]  

+wave reflected from the shear layer as y+ + co (2.4) 

where Ic, = w/co,  1 ~ ~ 1  < 1,  and kOKI is the x-component of the wavenumber of this 
wave which we have, for definiteness assumed to  be incident from above the shear 
layer. Then it follows from (2.1) to (2.3) and, in particular, from the fact that their 
coefficients depend only on y, that a t  all points within the shear layer p I  and vI must 
be of the form 

P~/P,C, = G ( K ~ ~  9) ~ X P  riko(KIx - c,t)i, (2 .5 )  

and 
M = M ( y )  = U(y)/co. 

We shall suppose that 1M < 1.  
This solution will not, of course, satisfy the physically required boundary condition 

that the normal component v of the perturbation velocity vanish a t  the surface of the 
plate and we must add to it another solution, say (uB, vB) and pn, which has outgoing 
wave behaviour a t  infinity and which has a y component, of velocity that is equal 
and opposite to v1 at  the surface of the plate. 
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Since the coefficients of the governing equations (2.1) through (2.3) depend only 
on y ,  i t  is natural to solve for uB, uB, andpB by taking Fourier transforms with respect 
to x. But this operation will automatically exclude any exponentially growing in- 
stability waves that might otherwise appear unless special care is taken to include a 
sufficiently rich class of generalized functions into our class of allowable Fourier 
transforms (Rienstra 1979). This is rather difficult to do and for the present purposes 
it is probably best to begin with a solution that is bounded at  infinity and consider 
its modification due to possible exponentially growing eigensolutions. We shall see 
that the former solution, which is regular a t  infinity, will then possess a square root 
singularity a t  the edge. We facilitate the imposition of the boundary condition a t  
infinity in the usual way by assuming that k, has a small imaginary part that will be 
put equal to zero a t  the end of the analysis. 

2. I ,  Construction of solution that i s  regular at infinity 

I n  view of the above remarks we seek a solution of the form 

(2.10) 

where CT = U ,  L for y 2 0. Then taking Fourier transforms of (2.1) through (2.3) and 
eliminating the Fourier transformed velocities from the results, we find that P, must 
satisfy 

D2(P'/D2)' + [D2 - k2] P = 0, (2 .11)  

where 
D k M - k ,  (2.12) 

and that V ,  is related to this solution by 

V = - P' / iD.  (2.13) 

Finally we require that Pc., V, remain bounded as y-f + oc) and PL, &, exhibit similar 
behaviour as y + - co. But since there is zero mean flow a t  infinity, these conditions 
imply that 

Pv-fC,exp[-(k2-k~)ty] as y-f +co (2.14) 

PL -f C ,  exp [(I? - Ic$ y ]  as y -+ - a3 (2.15) 

where C , ,  C, are constants (which we can choose independently of k) and the branch 
cuts of the square root are as shown in figure 3. 

We can now construct the solutions us, uB, and pB by adjusting the coefficients A: 
to satisfy the boundary conditions along y = 0, which require that uB cancel uI 
on the surface of the plate and that pB and uB be continuous across the half line 
y = 0, x < 0. Then since uI is continuous across y = 0 for all x, it follows from 
(2.6), (2.9), and (2.10) that 

A , t ( k )  V&, 0) = AF(k)  TJ,(k, 0) (2.10) 
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FIGURE 3. Rrancli cuts  for y1 = ( k 2  - ki)*. 

and that 

0 = jm eik"V~,(k,O)AR,(k)K(k)dk for x < 0, (2.17) 
- 0 3  

where 

(2.10) 

Equations (2.17) and (2.18) can be solved by the Wiener-Hopf technique (Noble 
1958, pp. 220ff). To this end we note that (2.17) implies 

Pb(k, 0) A g ( k )  K ( k )  = H-.(k)  (2.20) 

where H - ( k )  denotes a function which is analytic in the lower half k-plane. Similarly 
(2.18) implies that 

where H + ( k )  is analytic in the upper half k-plane and 

V&k, 0) = H + ( k )  +F-(k) (2.21) 

(2.22) 

is analytic in the lower half plane, since Im k, > 0. 
Eliminating V,AE between (2.20) and (2.21) we obtain 

H - I K - H ,  = F- for Imk = 0. (2.23) 

We now suppose that K has been factored into the ratio 

K ( k )  = K+(k) /K- (k )  for I m k  = 0 (2.24) 

of two functions K+ which are analytic and non-zero in the upper/lower half planes. 
Then (2.23) becomes 

K-H-- H+K+ = K+F- for I m  k = 0. (2.25) 
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Since 

it follows that we can write K ,  F- = G- - G,, where G* are analytic in the upper/ 
lower half planes and 

(2.26) 

Hence 
K - H - - G - =  H , K , - G , ;  I m k =  0 

and since the left-handlright-hand side of this equation is the boundary value of a 
function which is analytic in the lower/upper half plane, there must be an entire 
function, say E ( k ) ,  which coincides with each of these functions in their respective 
half planes of analyticity. The behaviour of H - ( k ) ,  and hence of A $ ( k ) ,  at  k = co is 
related to the behaviour of E ( k )  at  k = 00. And since G- goes to  zero as k + co, it follows 
that H -  and, consequently, A g  will possess the weakest singularity (or the most 
ra2id decay) a t  k = 00 when we require that E(k)+O as k - t c o .  Then Liouville's 
theorem implies that E ( k )  will be identically zero and therefore that 

H- = G-/K- 

and, in view of (2.20),  (2.24), and (2.26), that 

Substituting this along with (2.16) into (2.9),  we obtain 

(2.27) 

where 
= U , L  for y 2 0. 

Hence it follows from (2.19) and (2.24) that 

The behaviour of ApU(x) a t  x = 0 is determined by the behaviour of the integrand as 
k- t co .  Now we have shown in appendix B that K- N k-4 as k-+co. It therefore 
follows from the theory of Fourier transforms (Roos 1969, pp. 148 and 149) that 

1 
Ap,(x) - 2 as x+O+ (2.29) 

Since we have selected the solution whose Fourier transform has the most rapid 
algebraic decay as k- t co ,  (2.29) represents the weakest singularity that can exist a t  
the leading edge. This is, of course, not very surprising since the same singularity is 
known to occur when the edge is embedded in a uniform flow and we should not 
expect the non-uniform mean flow to change the local character of the solution. 
However, the verification of this fact is important because of the central role that 
this singularity plays in  the analysis. 
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When the mean flow is symmetric about the position y = 0 of the plate, the resulting 
symmetry of the boundary-value problem (2.11) through (2.15) implies that we can 
always choose the irrelevant constants Cu and C, such that 

PXk, - Y )  = PU(k,Y) 
T$(k, -y) = -V u( k ,Y) 

Then the Kernel function (2.19) becomes 

and i t  follows from (2.24) that the solution (2.27) becomes 

(2.30) 

(2.31) 

(2.32) 

for symmetric mean flows. 

2.2. Construction of eigensolution 

For most velocity profiles there is a range of frequencies for which the present problem 
possesses one or more eigensolutions that exhibit the same singularity a t  the edge 
as the solution obtained in the previous section and which involve instability waves 
propagating downstream from that edge. Since we can always add an arbitrary 
multiple of the former solutions to the latter and still have a solution to the problem, 
we can use them to obtain a family of solutions to the problem. But, as we indicated 
in the introduction, these eigensolutions will be unbounded a t  downstream infinity 
since they are associated with a Helmholtz instability of the shear flow. 

We therefore begin by considering the spatially growing Helmholtz instability 
waves in the two doubly infinite shear layers shown in figure 4. They correspond to 
the portion of the original shear flow lying above/below the plane of the plate and 
are bounded below/above by a wall extending from x: = -GO to x = +GO. 

These waves can be expressed in terms of the solutions Pu, V, and PL, 5, to the 
boundary-value problems (2.1 1)  through (2.15) as 

P& - = P,(k,K,",y) e x p [ i k O ( ~ ~ ~ - c o t ) ] ,  a = u, L for y 2 0, (2.33) 
POCO 

u s  = E(k,KX,y)  exp [ i k o ( ~ , " x - c 0 t ) ] ,  a =I U ,  L for y 3 0 ,  (2.34) 

where the eigenvalues K: are chosen such that Im K," < 0 and V, satisfies the addi- 
tional boundary condition 

T l , ( k O K , " , O )  = 0,  a = u, L. (2.35) 

Since any velocity profile that varies in the general manner indicated in figure 4 will 
either possess an inflection point, or have a discontinuity in slope there will usually be 
a range of frequencies, say 0 < w < 05 for a = U ,  L, such that these eigenvalue 
problems will each possess one or more solutions. No such solutions will exist for a 
linear velocity profile and the solutions will exist a t  all frequencies for the velocity 
discontinuity profile (see figure 6) discussed in $ 5 .  Most smooth velocity profiles will 
fall somewhere in between with each cut-off frequency w* ,  equal to some finite 
number (Drazin & Howard 1976, pp. 32 and ff., Betchov & Criminale 1967, pp. 
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FIGURE 4. Equivalent half plane problems for instability waves. 

21 6-219). More than one eigensolution will sometimes exist for certain, not very 
specific, ranges of Mach number and subrsnges of 0 < w < w*, but we shall suppose 
for simplicity that there is only one such solution on each of semi-bounded flows 
depicted in figure 4. 

Each of these solutions is, of course, defined on only half of the actual flow. We 
can extend them to the complete flow by setting 

and 
p g ( x , y )  = vg(x,y) = 0 for y < 0 

p g ( x , y )  = v&(x,y) = 0 for y > 0. 

But the resulting functions are now discontinuous across the half line y = 0, x < 0, 
I n  order to obtain solutions which are continuous across this half line, which vanish 
as y-f f co and still satisfy the boundary condition of zero normal velocity on the 
plate, we seek solutions p,& us (a  = U ,  L )  of the form 

a =  U ,  L, (2.36) 1 P.$ = P 5  +Pi ,  

vg  = v; + v;, 
where p i  and u i  are solutions to the original equations which satisfy the boundary 
conditions 

vi(x, 0,  t )  = 0,  x > 0,  (2.37) 

v;(x,O+,t) = w ; ( Z , O - , t ) ,  x < 0, (2.38) 

pXj(x,O+,t)-pX(x,O-,t) = -p$(x,O+,t) ,  x < 0, (2.39) 

p;(x, 0 + , t )  -p/4(x, 0 - , t )  = +p&(x, 0- , t ) ,  (2.40) x < 0, 

and remain bounded as y-f & 00. 

tions to these two boundary-value problems in the form 
Since p g ( x ,  0 + , t )  and p i ( x ,  0 - , t )  remain bounded for x < 0, we can obtain solu- 

(2.41) 

(2.42) 
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cr = li, L for y 3 0 and P,, V, are defined in $2.1.  These results can be inserted into 
the boundary conditions (2.37)-(2.40) to obtain a set of dual integral equations which 
are almost identical to the set obtained in $ 2. i. We can then solve these equations by 
the Wiener-Hopf technique in the same way as we did in that section. Since the 
procedure is nearly the same we do not repeat it here and merely give the results 

(2.43) 

(2.44) 

where the upper + or - sign is to  be associated with a = U and the lower sign with 
a = L, and K* are defined in s2.1. 

It is clear that integrand in (2.45) has the same asymptotic behaviour as k- tm 
as the integrand in (2.28). Hence, it follows that ApE has the same singularity a t  
x = O +  as ApB, that is, 

APE a as x + O + .  (2.46) 

We have now constructed two eigensolutions with square root singularities a t  
x = 0 corresponding to a: = U ,  L and therefore the most general eigensolution can be 
expressed as a linear combination of the two, say 

17, = BUp,U + BLpk (2.47) 

where B”, BL are constants. Then we can always introduce new constants, say 

(2.48) 

1 

P o  and P I ,  by 
2[f’<l (ko K;, 0 + ) K-( ko K;) B - PI,( ko ~ i ,  0 - ) K-( ko .I) BL] 

Po P,(~,K;, 0 + ) K - ( ~ , K : )  + f ‘ , ( k , ~ Z ,  0 - ) R - ( k O ~ Z )  

Bu+BL 
’1 P , ( ~ , K ~ , O + ) K - ( ~ , K ~ ) + P , ( ~ , K T ; ,  0 -  ) ~ - ( k , K z ) ’  

and 

and use these to eliminate BLT and BL in (2.47) to  obtain 

1?E = &PO(pg-Pg) + P 1 [ P L ( k o K r , o - )  K - ( K Z k O ) P ~ + P l , ( k o K : ,  o + )  K-(kOK$)p&].  (2.49) 

NOW it  follows from (2.33), (2.36), and (2.45) that the coefficient of PI is an eigen- 
solution to the problem that is non-singular at  x = 0. It is therefore reasonable to 
suppose that this eigensolution will not be generated by the viscous forces a t  the 
leading edge and will therefore be decoupled from the incident disturbance. In  fact, 
since K; = K$ when the shear flow is symmetric about the position y = 0 of the plate, 
i t  is easy to see that p;:, p,h” will then make no contribution to this eigensalution which 
now represents an anti-symmetric spatially growing instability wave on the un- 
bounded upstream shear flow (referred to as the varicose disturbance by Rayleigh). 
We therefore suppose that this eigensolution plays no role in the phenomenon under 
consideration and consider only the singular eigensolution 

P E  = $ P O ( P g - P g ) .  (2.50) 
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The corresponding upwash velocity vE is, of course, given by 

VE = +po(wg - V L ) .  (2.51) 

We shall subsequently show that the symmetry exhibited by the instability waves 
in figure 2 is consistent with the first eigensolution in (2.49) and not with the neglected 
eigensolution. 

When the mean velocity profile is asymmetric about y = 0 so that the upper and 
lower velocity profile cut-off frequencies 0:) wT, are unequal, there will be a range of 
frequencies, say 

when 02 < w:, where this uniqueness problem does not arise. In  this case only the 
upper flow will possess an  instability wave corresponding to  the boundary value 
problems (2.33) through (2.35) and there will therefore be only one eigensolution, 
which will, of course, still have a square root singularity a t  the edge. No eigensolutions 
will exist for w in the range 

max{w;,w;E;} < w < co. 

w; < w < wf 

When the mean flow is symmetric about the position y = 0 of the plate w$ = wg = w* 

K; = K; = K * ,  (2.52) 

say. Then we can insert (2.43) and (2.44) into (2.41), insert the result together with 
(2.30), (2.31)) (2.33)) and (2.52) into (2.36) and finally insert this result into (2.50) to 
obtain 

and 

+ 3 P e x p [ i k o ( ~ * ~ - c g t ) ] P U ( k 0 ~ * ,  Iyl), 0 < w < w* (2.53) 
where we have put 

(2.54) 

and have for convenience set the unessential normalizing constant Po equal to p. 
The general solution (pc ,  vc) to the boundary-value problem is given by 

PDU = PB+CPE:, VG' = v,+Cv,, (2.55) 

where C is an arbitrary constant and (p,, v,) is the particular solution constructed 
in $2.1.  

2.3. Construction of non-singular solution and determination of 
instability amplitude 

The general solution (2.55) will usually be unbounded at infinity and singular a t  the 
leading edge. However, we can eliminate the leading edge singularity by choosing 
the arbitrary constant C so that 

Ap,+ - CAP, as x+ + 0 for 0 < w < min{wF,, W E } .  
R e  consider only the case of it symmetric mean flow. Then it follows from (2.30), 
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(2.28), and (2.53) that this occurs when C = 1. Hence, it follows from (2.32), (2.53), 
and (2.55) that the solutionpF which is non-singular a t  the edge is given by 

+-exp[ik,(~*x-c,t)]P,(k,~*, P lyl) for 0 < w < w* .  (2.56) 
2 

Only the second term of this solution grows exponentially large a t  downstream 
infinity. We can therefore think of it as the Helmholtz instability wave triggered a t  
the leading edge by the incident acoustic wave p z  (given by (2.5)). A suitable measure 
of the strength of the instability produced at  the edge by a particular type of acoustic 
disturbance is then the amplitude of this term a t  (actually just above) the leading 
edge divided by the amplitude of the acoustic wave a t  this point, that  is, 

S Z ~ ( K ~ ,  K * )  = I(2nd term of (2.56))/pz(0, 0, t ) J  = &]PPL,(ko~*,  O)/PI (~ I ,  0)l. 

(2.57) 

2.4. The causal solution and the upstream instability wave 

As indicated in the introduction, the real time solutions obtained by taking the 
inverse Laplace transform of the non-singular solution (2.56) or of the solution (2.32), 
which is bounded a t  infinity, will not be causal, that is, the diffracted field will antici- 
pate the initial incident disturbance when the process is first started. The easiest way 
to obtain a causal solution to  the present problem is (Briggs 1964, cha. 2; Tam 1971) 
to first solve the problem for the case where the frequency w is complex and has a large 
positive imaginary part. The causal solution for real w is then obtained as the analytic 
continuation of this solution to the real axis in the complex w plane. 

To this end we first construct a solution of the scatt'ering problem that has complex 
frequency and is bounded at  infinity. The procedure is the same as the one used for 
the real frequency case in § 2.1 and the result is formally identical to the previous 
solution which is given by (2.27) (or by (2.32) for the case of a symmetrical near flow). 
I n  fact the only difference between the two solutions is that  some of the complex 
zeros that appear in the numerator and denominator of the Kernel function (2.19) 
will lie in different half planes in the two cases and the factorizing functions K* will 
therefore have to be different in the two cases. 

We shall for simplicity restrict our attention to  the case where the mean flow is 
symmetric about the position y = 0 of the plate and the frequency w is less than the 
cut-off frequency w* of the half-space Helmholtz instability of the downstream flow. 
Then the non-causal bounded solution will be given by (2.32) and its Kernel function 
K will be given by (2.31). 

Equations (2.31), (2.35), and (2.52) show that K has a simple pole a t  k = k , , ~ * ,  
which is associated with the downstream instability wave. But there is also a Helm- 
holtz instability wave on the upstream jet velocity profile which for the present 
symmetric case must be given by (2.33) and (2.34) wit,h the boundary condition (2.35) 
replaced by 

P d k O K J ,  0) = 0, (2.58) 
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where KJ is now used in place of K* to denote the eigenvalue of this new eigenfunction 
prob1em.t When w is real this instability wave will propagate in the downstream 
direction and grow exponentially fast in that direction. For most profiles it will only 
exist for a certain range of frequencies, say 

0 < 0 < wJ:  

where in all cases of which I am aware the sinuous disturbance cut-off frequency w 
is larger than or equal to the cut-off frequency w* for the half-space instability. 

The Kernel function (2.31) will therefore have a simple complex zero at  k = k O K J  

in addition to  its pole a t  k = k , , ~ *  for 0 < w < w* .  These two singularities must of 
course lie in the lower half k-plane when w is real but they will move into the upper 
half plane when the imaginary part of w is sufficiently large and positive.$ The 
factorization 

K(k) = K;(k)/Kt(k), Imk = 0, -co < Rek < co (2.59) 

of the Kernel function (2.31) into the two functions KL that are analytic in the upper/ 
lower half planes will therefore differ in the present case from the factorization (2.24) 
of $2.1.  I n  fact, since the remaining zeros, poles and branch points of K ,  that is, all 
those not associated with the instability waves, must lie in the same half planes in 
both cases, the present factorizing functions KL are related to  those of $ 2.1 (i.e. K,) 
by$ 

(2.60) 

where K*(k, o) are the functions of $2.1 extended to complex values of w with large 
imaginary part. 

The solution to the present problem which we denoted by ( p c ,  wc) is therefore given 
by (2.32) with K* replaced by K:. Hence, it follows from (2.60) that 

This result only applies when the imaginary part of w is sufficiently large. I ts  
analytic continuation to values of w with small imaginary part is obtained by de- 
forming the integration contour so that it is not crossed by any singularities as 
Im o+ 0. But since the zero at  k O ~ J  arising from Pu(k, 0) is cancelled by the zero in 

t We have already indicated that, for the symmetric mean flow under consideration, the 
instability wave (2.33) on the semi-bounded downstream flow can also exist on the upstream 
flow where it represents an antisymmetric instability mode (Betchov & Criminale 1967, pp. 218 
and 2 19). The instability wave corresponding to KJ represents a symmetric instability mode 
(mode I in figure 53.3 of Betchov & Criminale) called the sinuous disturbance by Rayleigh. 

$ We cannot of course prove that, this will be the case for every velocity profile, but Hardisty 
(1974) has shown it t,o be true for the slug flow profile considered in $5 below and we have found 
i t  to  be true for the incompressible jet studied in $ 5 3  of Betchov & Criminale (1967) (note their 
figure 53.1).  

$ Recall that  tlie solution of $2.1 was constructed on thc assumption that w had a small 
positive imaginary part that  was eventually piit equal to zero. However, the functional form 
of that solution cannot change as the magnitude of tlie imaginary part of w is increased until 
it becomes large enough to  cause the poles and zeros associated with the instability waves to 
cross the real axis. All tliis is easily verified for tlrc specific Kernel fimctioiis (5.1 3) corrcsporiding 
t o  tlie slug flow jctt .  
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FIGURE 5. Integration contour for causal solution. 

the numerator of (2.61), the only singularity that crosses the real axis during this 
limit is the simple pole a t  k O K * .  The integration contour for x > 0 can therefore be 
taken as shown in figure 5 .  Then applying the method of residues to evaluate the 
contribution of the pole at  k o ~ * ,  we obtain upon using (2.54) 

P c  K z - K *  k - k O K J  Pu(k, IYl)dk 
e i k z  % ( K Z , o )  K+(kOKz) 

( k o K z - k )  K - ( k )  ( K ~ - K J )  ( k - k o r * )  Pu(k,O) 

The derivation of this result is of course only formal since we were not able to explicitly 
verify the relation (2.60) for all velocity profiles. However, it  does represent a solution 
to the scattering problem formulated in $2.1,  which (as we shall show in the next 
section) is decoupled from the instability of the upstream flow. And, as implied in 
the introduction, I believe this maybe more physically significant than causality. 

In  order to show that (2.62) is a solution, notice that 

1 1 
( K I - K * )  - ( k - k  OJ K ) 

( k o ~ z - k )  K ~ - K ~  k - k O K *  

Hence it follows from (2.32) and (2.53) that (2.62) is a special case of the general 
solution (2.55), which corresponds to setting the constant C equal to ( K * - K , ) /  

( K ~  - K J ) .  It must therefore itself be a solution. 
We have seen that it is also the causal solution for the special case of the slug flow 

velocity profile discussed in $ 5 .  We therefore expect' that it  will also represent the 
causal solution for most smooth velocity profiles at) frequencies below the cut-off 
frequency for the half space instability on the downstream semi-bounded flow. 

As in the case of the non-singular solution, (2.62) is coupled to the Helmholtz 
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instability on the downstream semi-bounded flow. But in this case the ratio d c ( ~ I ,  K * )  

of the amplitude of the instability wave at  the leading edge divided by the amplitude 
of the acoustic wave a t  that point is related to the corresponding ratio d F ( ~ I ,  K * )  for 
the non-singular solution by 

(2.63) 

3. General discussion and comparison of solutions 
We have now obtained three different solutions to the leading-edge scattering 

problem for a symmetric mean flow and w in the range 0 < w < w * ,  where we have 
assumed that the cut-off frequency w* for the instability of semi-bounded down- 
stream flow is always less than or equal to the cut-off frequency w of the sinuous in- 
stability of the upstream flow. The solution (2.32),  which we denote byps, is bounded 
a t  infinity, has a square-root singularity at the leading edge, and is non-causal. It 
holds for all values of w .  The solution (2.56), which we denote by pF, is unbounded a t  
infinity but is non-singular a t  the leading edge and is non-causal. The unbounded- 
ness results from the triggering of an instability on the downstream semi-bounded 
flow so that this solution only exists for w less than the cut-off frequency w* of this 
wave. The causal solution (2.62), which we denote by p,, is also unbounded a t  infinity 
due to the triggering of an instability wave on the downstream flow but, as can easily 
be seen by an argument similar to the one preceding (2.29), it has a square-root 
singularity a t  the leading edge. Thus unlike the case of a trailing edge, the solution 
which is bounded a t  a leading edge does not coincide with the causal solution ! 

The flow is completely stable when w > wJ and the solution that is bounded a t  
infinity is then also causal ! For w < w* the non-causal solutions (2.32) and (2.56) both 
involve the sinuous instability wave of the upstream flow. This wave decays to zero 
a t  upstream infinity and reaches a finite value at  the edge. It is not of course present 
in the downstream region. Mathematically, it arises from the pole in the integrands 
of (2.32) and (2.56) that occurs because K~ must satisfy (2.58). When x < 0, the 
contour integrals are closed in the lower half k-plane and the contribution of this pole 
is just the upstream sinuous instability wave. This pole is cancelled out by a corre- 
sponding zero in the numerator of the causal solution (2.62). Thus, as one would expect, 
the causal solution only involves instability waves propagating away from the edge. 
But since disturbances can propagate upstream on a subsonic flow, i t  is possible 
(though rather unlikely, I feel) that the upstream instability wave could be triggered 
by the unsteady motion occurring at the edge - especially if this instability wave were 
to  decay very rapidly as x+ -a. However, i t  can be shown (Drazin & Howard 
1966) that the decay rate ImkOKJ of this mode gives to zero as wd’/U,,,+O, where 6 
is some characteristics width of the jet. 

It is worth considering the behaviour of the causal solution for w in the range 
w* < w < w J .  The downstream flow will now be stable and the non-singular solution 
(2.62) will no longer exist while the causal solution will no longer be given by (2.61).  
Although this cannot be proved in general and I have not investigated the possibility 
for any particular mean flow, it is likely that the only singularity or zero that can 
cross the real axis of the k-plane as Im w+ m is the one a t  k O ~ J .  Then two possibilities 
can oc~cur: either k , ~ , ,  will remain in the lower half 1 ~ l : ~ t i e  nnd thc c.a~rs:\I solution will 
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coincide with the solution p B  (given by ( 2 . 3 2 ) )  or k , , ~ ~  will move into the upper half 
plane and the integrand of the causal solution will differ from that of (2.32) by the 
factor ( k - k , , K J ) .  I n  which case an argument similar to the one preceding (2.29) will 
show that this solution must become infinite like x-2 a t  the leading edge. It therefore 
appears that the causal solution will either contain an instability wave propagating 
tounrd the edge, which is very unlikely behaviour for a causal solution, or i t  will 
involve a non-integrable singularity a t  the edge. 

When w is in the range 0 < w < w * ,  the unbounded solutions (2.56) and (2.62) are 
both special cases of the general solution ( 2 . 5 5 ) .  The non-singular solution (2.56) is 
obtained by adjusting its arbitrary constant to  eliminate the edge singularity and 
the causal solution is obtained by adjusting it to eliminate the contribution from the 
uptream instability. Both solutions are therefore coupled to the downstream insta- 
bility wave (2.33) and (2.34). 

Now the vortex shedding shown in figure 2 is, of course, highly nonlinear, but we 
might still expect these equations to provide a fairly good representation of the flow 
in the vicinity of the edge where the amplitude of the unsteady motion is not too 
large. Equation (2.30) implies that the axial velocities associated with the upper 
surface instability wave in the singular eigensolution (2.54) will be 180" out of phase 
from those associated with the lower surface instability wave. Then whenever the 
lower surface motion is in the upstream direction the upper surface motion at  the 
corresponding position will be in the downstream direction. The lower photograph 
in figure 2 clearly shows that the lower surface vort,ical motion is in the upstream 
direction near the leading edge (where the linear solution applies) while the upper 
surface motion appears to be in the downstream direction. 

4. The diffracted radiation 
Since I m  K* < 0 and Re K* > 0 ,  i t  is easy to see that the terms associated with the 

downstream Helmholtz instability do not contribute to the pressures given by (2.56) 
and ( 2 . 6 2 )  when the observation point y lies far above the plate (i.e. in the radiation 
field) and 0 = tan-1 y l x  lies outside the range 

0 < 8 < tan-l- Im K*/Rc K*. (4.1) 
The pressure in the radiation field is therefore determined by the integral terms 

which can be evaluated for large values of r = (x2 + y2)* by the method of stationary 
phase. Our interest here lies in the diffracted wave. We therefore neglect the contri- 
bution of the poles, which correspond to the reflected wave, to obtain upon inserting 
(2.14) into (2.32),  ( 2 . 5 6 ) ,  and (2.62), applying the method of stationary phase, and 
using (2.5) and (2.57) to simplify the result 

where 

(4.3) 
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and d F ( ~ I ,  K )  is defined by (2.57). This result holds for all frequencies and angles for 
the solution pu that is bounded a t  infinity and, as we have seen in $3,  the causal 
solution becomes identical to p ,  when w > oJ while the non-singular solution pF 
does not exist when w > u*. 

Since? K ~ + C C  while K* remains finite1 as w8/flmaX+0 (Drazin & Howard 1966) it 
follows from (4.3) that T,+ TF as w8/Um,, + 0 and therefore that the causal and non- 
singular solutions have the same acoustic field in this limit. 

The complete low frequency limits of these results are rather subtle since the 
straightforward approximation to the Kernel function, which determines the K,(lc) 
functions that appear in dF, is not uniformly valid for all values of k (Rienstra 1979). 
I mill not go into detail here (the interested reader is referred to Rienstra) but the net 
effcct of the non-uniformity is to introduce a factor of 

K* - cos 0 1 K * - K I  1 
which cancels the ones that appear in the solutions that are coupled to the down- 
stream instability. The result is that the low-frequency approximation to these 
solutions will vary with angle like 

I 

[1-M(0)cos8]-1 l--cosO , [ I-’ 
where M(y) is the Mach number of the jet defined by (2.8). This is in complete agyee- 
ment with Goldstein’s (1978, 1979) low frequency solution for the scattering of a 
vortical disturbance by a leading edge. (In this latter case K~ corresponds to the wave- 
number l /N(y)  of the incident vortical disturbance.) It is worth noting that Gold- 
stein’s result is in excellent agreement with experiment. 

The issue of causality was not explicitly discussed by Goldstein (1978, 1979). But 
only the low- and high-frequency limits were treated there and we have seen that 
causality is irrelevant in the high-frequency limit. I n  order to understand the low 
frequency limit, we note that the imposition of causality can be thought of as a 
procedure for putting in the correct damping in order to  ensure that the instability 
waves travel away from the point where they are generated. But since the down- 
stream instability waves do not actually grow in the low frequency limit (and, in 
fact, become purely convected disturbances), the small damping already included by 
Goldstein to deal with the other waves also causes the instability waves to  travel in 
the proper direction and consequently yields the same result as the imposition of 
causality. 

5.  Plug flow model 
Evaluation of the results of the previous sections requires the solution of the 

ordinary differential equation (2.1 1). For most velocity profiles, this must be done 
numerically, but relatively simple results can be obtained for the discontinuous or 
slug flow velocity profile shown in figure 5 ,  since (2.11) will then have constant co- 
efficients and will therefore be quite easy to solve. This profile is somewhat singular 

t But, as we have already indicated, k O ~ ~  + 0 in this limit. 
$ In fact K* --f 1/M in this limit, so it turns into R convected tlistiirharice nhicll docs not 

gron as it pi optigntf.4 tlonristrraiii 
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FIGURE 7.  Branch cuts for y ( k , y )  and y z  = ( k 2 - ( M k - k o ) 2 ) + .  

however, in that the cut-off frequencies are infinite for both the sinuous instability 
on the upstream flow and the Helmholtz instability on the semi-bounded downstream 
flow. 

An alternative approach that avoids this difficulty, is to approximate the solutions 
to  (2.11) by their low and high frequency asymptotic expansions. But since, as was 
shown in 9 3, the causal solution becomes decoupled from the instability waves in the 
high frequency limit and, in fact, becomes identical to the bounded solution, I decided 
to adopt the former approach. However, the reader should use a certain amount of 
care when interpreting the results. 

We suppose that the plate is located a t  the centre of the region of non-zero mean 
flow whose width is 26 (see figure 6).  Then within this region, which we denote as 
region 2, the general solution of (2.11) is simply 

p = AeYz@)y + B e - ~ i ( k ) y ,  (5.1) 
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where A and B are constants and 

y 2 ( k )  = ( k 2 -  (k,-kM)2)4, ( 5 . 2 )  

where, for definiteness, the branch of the square root is as indicated in figure 7 .  

of the form 

where 

I n  the exterior of region 2 ,  where there is no mean flow, the bounded solutions are 

P = constant x e+uyi(k), y 2 0,  (5.3) 

y,(k) = (k2-k;)B (5.4) 

with the branch chosen as indicated in figure 3. 
Since continuity of pressure and particle displacement must be imposed at the 

boundary of region 2 ,  these solutions must satisfy the jump conditions (Goldstein 
1976, p. 20). 

P ( k 6 f 0 )  = P ( f 6 T 0 ) ,  (5 .5 )  

(k0-Mk)2P’(  & 64 0) = kip’( & 6 T 0 )  
along these lines. 

5.1. Calculation of particular solutions 

It is easy to show with a little algebra that the solutions corresponding to Pu and P,, 
which are only required to satisfy the boundary conditions (2.14) and (2.15), can be 
written as 

e-yi(k)U, y 2 6, 

(5.7) 

where 

A*(k) = [y , (k)  (k, - &!k)2 y,(k) h i ]  e+yz(k)6 (5.9) 

and we have taken the unessential constants C,, C, to be unity. 

the boundary condition (2.4), must behave like 
The solution corresponding to the incident acoustic wave p I ,  which is defined by 

eYi(kOKI)V + &-Y,(k&i)U 

above the region of mean flow, like (5.1) with k = k , ~ ~  within the region of mean 
flow and like (5.3) with k = k O K I  below this region. 

It is again easy to show with a little algebra that the solution that satisfies ( 5 . 5 )  
and (5.6) is given by 
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Since the mean flow is symmetric, equation (2.52) must hold and there will only be a 
single eigenvalue K* for the instability wave on the semi-bounded downstream flow, 
which is given by (2.33) subject to the boundary condition (2.35). For the slug flow 
model which we are now considering, Pa (for a: = U , L )  is given by (5.7j and (5.8). 
Hence, it follows from (2.13) and (2.35) that we must put A+ = -A- and therefore 
that K* must be a root of 

y l ( k O ~ * )  (1 - l l l ~ * ) ~  + y z ( k , ~ * )  tanh 8yz(IC,~* j = 0. (5.11) 

The eigensolution for the sinuous instability on the upstream flow is also given by 
(2.33) with Pa, a = U ,  L, given by (5.7) and (5.8), but in this case it must satisfy the 
boundary condition (2.58), which implies that A+ = A- and therefore that the eigen- 
value K J  is a root of 

yl(ICOKJ) (1 - M K J ) 2 f Y 2 ( k O K J )  coth6y2(kOKJ) = O .  (5.12) 

Equations (5.1 1) and (5.12) will have several roots which correspond to modes 
trapped in the velocity discontinuity layer that propagate upstream against the 
flow (Gottlieb 1959). But these equations will each have only one root corresponding 
to  a downstream propagating instability wave that grows exponentially in that 
direction. Then ReK* > 0 ,  ReK, 2 0,  and ImK* < 0, T m K J  < 0 for these waves. 
Figure 7 is a plot of the first of these roots as a function of 

for various values of M .  
Q,, k,B = wS/c, 
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5.2. Factorization of the Kernel function 

Inserting (5.7) and (5.8) into (2.13) to calculate V, and VL and using the result in 
(2.31) we find that 

(5.13) 

where 

Then since ILo(k)l + 1 and argL,(k)+O as k+ 5 GO, it follows that (Gakhov pp. 36 
and 37; Noble pp. 15 and 16) 

(5.15) 

are non-zero bounded analytic functions in their respective half planes of definition 
such that 

(5.16) 

where the singular integral is to be interpreted as a Cauchy principal value. Hence i t  
follows that we can write the factorization of K implied by (2.24) as 

(5.17) 

(5.18) 

The numerator and denominator, L,(k) and L,(k), of L,(k) will have a number of 
simple zeros that will approach the real k-axis when the small imaginary part of k, 
is just equal to zero. We denote these zeros which will always lie in the range 
- k , / (  1 - M )  < k < - k, by ky, j = 1 ,  2 ,  . . . J ,  and k$’, j = 1, 2, . , . J,, respectively. 
Since they correspond to waves trapped in the slug flow velocity profile, which can 
only propagate upstream, they must approach the real axis from below. The numerator 
of Lo will also have zeros a t  the branch points ko / (  1 + M ) ,  - k o / (  1 - M )  of 7,. These 
zeros will cause the imaginary part of In Lo to change discontinuously as the real 
axis is traversed. I n  order to ensure that the appropriate branch of the logarithm is 
used as the integration proceeds across these zeros, it will be helpful to remove them 
analytically before attempting to evaluate the integrals (5.15) and (5.16).  When this 
is done we find that 

where 

(5.20) 

(e5.2 1 ) 
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(5.22) 

and we have omitted a possible piecewise constant imaginary additive term since the 
formulae of the previous section only involve the absolute values of K ,  and K- and 
the imaginary part of (5.19) will therefore make no contribution. This also obviates 
the need to evaluate any integrals that involve both logarithmic singularities and 
Csucliy principal values. 

5.3. Working formulae 

Substituting (5.10) into (2.13) to calculate V, and then inserting this together with 
(5.17), (5.18), and (5.19) into (2.57) we obtain 

where 

Consistent with equation (2.63), we put 

(5.24) 

Then substituting (5.7) into (4.2) we obtain 

as r+co for h = F ,  C. (5.25) 

The acoustic radiation for the case where there is no vortex shedding is given by this 
result with h = P and the factor ( K *  - K , ) / ( K *  - cos 0) put equal to one. 

6. Numerical results and discussion 
We have seen that there are two mechanisms that can couple the incident acoustic 

wave to the linear instability wave on the downstrea,m flow. We can illustrate the 
principal effects of this coupling phenomena by working out numerical results for 
the plug flow model described in 9 5. Figure 8 is a plot o f  the eigenvalue K* of the down- 
stream instability wave. Its amplification rate is given by ko times the imaginary 
part of  K * .  The figure clearly shows that IIm K * /  is a maximum when the Mach number 
is small and that for fixed M the maximum tends to occur a t  a Helmholtz number 
oS/co (based on shear layer thickness) of about 0-27 or so. The dropoff a t  small values 
of ( d / c o  occurs because the plate tends to inhibit the downstream vortex shedding 
which is represented mathemntic.ally by the instability W ~ T T  solution. 
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FIGTJRE 9. Normalizcd irlstnhility xvave amplitude at the leading edge for the causal soliit ion.  
( / I )  = 0.25. ( b )  .If = 0 . 7 5 .  
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E'icu~ts 10. Norl~ialized instability \\-ELVC amplitude at tho loading cdgc for tlie boundcd solution. 
( u )  ,21 = 0.25, ( b )  12.f = 0.75. --...--? m,, = 0.125; ----, ('J,, = 0.25;  ---, w o  = 0.75; --, 
( d o  = 3.0. 

The amplitntle of tlie instability waves at] any point downstream of the leading edge 
is equal to 

& , , ( K ~ ,  K " ) ~ ~ I ( O ,  0, t)Jexp [ - k,(Im K * )  21, 

where h = C for the causal solution and h = F for the solution which is non-singular 
a t  the edge. Thus represents the normalized initial (i.e. a t  the leading edge) 
amplitude of the instability wave. The instability wave will be the largest when d,, 
arid ImK* achieve their largest values. The initial amplification ratio d, for the 
causal solution is plotted against K ~ ,  the normalized wavenumber of the incident 
acoustic wave, in figure 9 and the initial amplification ratio s9, for the bounded 
solution is plotted in figure 10. The results show that, unlike Im K * ,  &,, for h = C, F 
increases with increasing Mach number. The wavenumber K* is equal to the cosine of 
the angle that the incident wave makes with the downstream jet axis so that it is 
perpendicular to the plate when K~ = 0. The figures show that d,, generally attains 
its minimum for any given Mach number and Helmholtz number when the incident 
i\ a v e  makes n certain rather smnll angle with thc jet axis. (The minimum occurs too 
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FIGURE 11. Effect of instability wave on acoustic pressuro ratio. (a )  M = 0.25; w o  = 0.25. 
( b )  A1 = 0.75; w o  = 0.75. ---, causal solution; ~ , solution without edge singularity. 

close to K~ = 1 to show up on figure 9(a) . )  When the incidence angle is smaller than 
this d, tends to decrease with Helmholtz number while dF tends to increase. When 
the incidence angle is larger than this value alp reaches a maximum a t  a value of 
wo near 0.125 while .S, reaches a maximum a t  a value of coo that is close to value where 
the instability wave achieves its maximum growth rate. 

We have seen that the causal solution will coincide with the solution that is bounded 
a t  infinity a t  frequencies above the cut-off frequency wJ of the upstream sinuous 
instability. But since this cut-off frequency is infinite for the slug-flow velocity profile, 
it is possible that the high-frequency causal and no-vortex-shedding solutions will 
differ in this case. However, i t  is easy to see that equations (5.11) and (5.12) become 
equal as wo = E o G - + c o ,  which implies that K * + K ~  as wo+co. Hence, it follows from 
(5.24) and (5.25) that the causal and bounded solutions will again have the same 
radiation fields in this limit. 

Figure 11 is a plot of the acoustic pressure in the radiation field as a function of the 
angle 8 measured from the downstream jet axis. The dashed curves correspond to 
the causal solution, and the solid curves correspond to the case where there is no 
vortex shedding. For the conditions shown, K* is so close to K~ that there is no significant 
difference between the causal solution and the solution that is bounded a t  infinity. 
These two solutions will only differ when wo is quite sma11. T t  can also be seen that the 
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solution which is non-singular a t  the edge is not extremely different from these two 
solutions; with the primary difference occurring in the upstream direction where the 
radiation field is small. It has frequently been suggested that the vortex shedding 
downstream of the edge in an edge tone experiment plays no role in the edge tone 
generation. The present results show that this will certainly be the case if the causal 
solution provides the correct coupling condition and the frequency is not too low. 
Otherwise there could be a small but significant effect. 

The author would like to thank Dr Theodore Pessler for carrying out the numerical 
computations and Prof. M. V. Morkovin for his heIpfu1 comments. 

Appendix A. Large-wavenumber solution to reduced wave equation 
I n  this appendix we obtain expressions for the solution to the reduced wave equation 

(2.1 1 )  that satisfy the boundary conditions (2.14) and (2.15) and are valid in the limit 
as k -+ 00 while k, remains finite. 

To this end, we first transform (2.1 1) into normal form by introducing the variable 

II = P/D 

to  obtain 

rI"+Qrl = 0, 

where D is defined in (2.12) and 

Expanding this result for large I'C we obtain 

q = k2Q, + kq, + qz + O(k-') ,  

where 

Then as shown for example in Goldstein & Braun (1973) the solutions to equation 
(A2) will possess an asymptotic expansion of the form 
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Inserting this along with the expansion ( A 4 )  into ( A 2 )  and equating coefficients of 
like powers of k ,  we obtain 

Q‘2 + po = 0, 

Q”p0 + 2sr’p; + q1 po + (Q’2 + qo) p1 = 0, 

Hence i t  follows that 

and 
s2 = i J ( l - I n 2 ) t d y  

Then corresponding to  these two signs, ( A  2 )  will possess the two linearly independent 
asymptotic solutions 

exp [ f I [k(  1 - M2)* + k0M(  1 - M2)-4] dy] 
rr* = ( 1 - M 2 ) &  + O(k-l). (A71  

Since 

(k2-((ko-Mk)2)* y ( k , y )  = f [ k ( l - M 2 ) * + k o M ( 1 - M 2 ) - t ] + O ( k - l ) ,  k 3 0 9 ( A 8 )  

when we choose the branch of the square root in the manner indicated in figure 6 ,  it 
follows from ( A  1 )  that the asymptotic solutions to (2.11) that correspond to Pv, PL 
and therefore satisfy the boundary conditions (2.14) and (2.15) with the choice of 
branch shown in figure 3, can be written as 

Y(k,V)dV 

PL?,L = D e  1 +O(k-’) for y 20 as k-tco. 
( 1 - M 2 ) t  

Appendix B. Asymptotic behaviour of the factors of the Kernel function 
I n  this appendix we use the asymptotic solutions of appendix A to determine the 

behaviour of K+ as k + 00. 

Inserting ( A 9 )  into (2 .13)  we find that 

VLTiL = TPu,L f Y  for y 2 0 as k- tco .  

Hence it follows from (2.12),  (2.19),  and (2.24) that 

2 i (kM - k ) 

Y 
K + ( k ) / K - ( k )  = K ( k )  = KO, I m k = O ,  

where 

and 
F O I  -t 1 

argKo+O as k - t  kco. 

It therefore follows (Noble 1958, pp. 15 and 16, note equation (1.21)) that we can 
factor KO into the ratio KO = K t / K i  of two functions K5 that are analytic in the 
upper/lower half plane such that K: is bounded and non-zero as k- tco in the upper 
half plane and K ;  is bounded and lion-zero as k - t m  in the lower half plane. We 
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therefore conclude from (As ) ,  (B l), figure 6, and the fact t,hat k, has a small positive 
imaginary part that 

N Ic-Q as k -+ co in the upper half plane, (B 2)  
1 

K+ 
(k + k,/( 1 - M))Q 

as k -+ co as in the lower half plane. 
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